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All-optical computing based on convolutional
neural networks
Kun Liao1, Ye Chen1, Zhongcheng Yu1, Xiaoyong Hu1,2*,
Xingyuan Wang3*, Cuicui Lu4, Hongtao Lin5*, Qingyang Du6, Juejun Hu6
and Qihuang Gong1,2

The  rapid  development  of  information  technology  has  fueled  an  ever-increasing  demand  for  ultrafast  and  ultralow-en-
ergy-consumption computing. Existing computing instruments are pre-dominantly electronic processors, which use elec-
trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-
cessing. The scaling of computing speed is limited not only by data transfer between memory and processing units, but
also by RC delay associated with integrated circuits.  Moreover,  excessive heating due to Ohmic losses is becoming a
severe bottleneck for both speed and power consumption scaling. Using photons as information carriers is a promising
alternative. Owing to the weak third-order optical nonlinearity of conventional materials, building integrated photonic com-
puting chips under traditional von Neumann architecture has been a challenge. Here, we report a new all-optical comput-
ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural
networks.  The device  is  constructed  from cascaded silicon  Y-shaped waveguides  with  side-coupled  silicon  waveguide
segments  which  we  termed  “weight  modulators ”  to  enable  complete  phase  and  amplitude  control  in  each  waveguide
branch. The generic device concept can be used for equation solving, multifunctional logic operations as well as many
other mathematical operations. Multiple computing functions including transcendental equation solvers, multifarious logic
gate  operators,  and  half-adders  were  experimentally  demonstrated  to  validate  the  all-optical  computing  performances.
The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several
picoseconds with an ultralow energy consumption of dozens of femtojoules per bit. Our approach can be further expan-
ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-
chip all-optical computing.
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Introduction
The  demand  for  ultrahigh-speed  and  energy-efficient
computing1 has  been increasing exponentially  driven by
the rapid development of advanced engineering calcula-
tions,  economic  data  analysis,  and  cloud  computing.
Traditional  electronic  processors,  the  pre-dominant
computing platform to date, adopt the von Neumann ar-
chitecture2−3 where  storage  and  processing  units  are
physically separated.  In  von  Neumann  processors,  lim-
ited  data  communication  bandwidth  between  the
memory and processing units  as  well  as  RC delay of  in-
tegrated  circuits  have  become  major  barriers  towards
continuing  scaling  of  computing  speed4−5.  Moreover,
heat dissipation due to resistive losses in electrical  wires
severely  compromises  energy  efficiency  of  traditional
electronic processors6. These limitations make it difficult
to realize high speed and low energy consumption simul-
taneously7−8. Specialized processors, such as graphic pro-
cess  units  designed  for  mathematical  calculation  tasks
and field programmable gate arrays specialized for arith-
metic  logic  operations,  utilize  modified  Von  Neumann
architecture5,9,  which however still suffer from the speed
and energy  consumption  limitations.  All-optical  com-
puting adopting photons as information carriers offers a
promising alternative  approach.  To  date,  optical  com-
puting  usually  relies  on  third-order  optical  nonlinearity
to implement  all-optical  control,  which  requires  ultra-
fast  response  and  giant  third-order  optical  nonlinearity
in  photonic  materials10−11.  However,  ultrafast  response
time  and  giant  nonlinearity  often  presents  an  inherent
trade-off  in  optical  materials  such  that  larger  nonlinear
susceptibility typically  can  only  be  attained  at  the  ex-
pense  of  slower  response  time.  The  trade-off  imposes  a
major challenge to constructing integrated photonic pro-
cessors  following  the  von  Neumann  architecture,  often
mandating  complicated  heterogeneous  integration  of
various photonic devices in a single chip. Therefore,  ex-
ploring new  architectures  and  unconventional  comput-
ing schemes for all-optical computing becomes imperative.

Here, we report a new strategy to realize ultrafast and
ultralow-energy-consumption all-optical  computing  in-
cluding equation  solving,  multifunctional  logic  opera-
tions  based  on  optical  convolutional  neural  network
(CNN).  Inspired  by  biological  brains12−13,  optical  neural
networks have  been  used  to  carry  out  image  classifica-
tion14−15,  speech  recognition16 and  self-learning  tasks17.
Up  to  now,  the  scheme  of  three-dimensional  all-optical

diffraction  network  can  process  a  large  amount  of  data
and obtain rich characteristic information, there is still a
long way to go to achieve on-chip integration due to the
spatial diffraction  characteristics  of  the  light  field.  Be-
sides,  in the strategy of  programmable network through
thermo-optical  modulation,  the  potential  problems
caused by ohmic loss make the processing speed and en-
ergy consumption unable to be equivalent to the all-op-
tical  control  network.  For  the  first  time,  we  propose  an
all-optical  computing  chip  based  on  physically-fixed
CNN. Optical  CNNs possesses  a  non-von Neumann ar-
chitecture,  which  underlies  its  ultrafast  computing  time
and ultralow energy consumption. The proposed optical
CNNs are able to perform computing tasks through con-
volution  operations  between  layers  without  the  aid  of
nonlinearity layers,  conducive  to  multi-tasking  pro-
cessing  and  significantly  reduced  energy
consumption18−19.  Furthermore,  owing  to  their  powerful
prediction capability, a single network can solve a specif-
ic  class  of  computing  problems  rather  than  one  single
task. This scheme has built a new platform for all-optical
computing, on  which  almost  all  signal  processing  func-
tions are allowed to be implemented.

The  optical  CNN  consists  of  cascaded  silicon  Y-
shaped  waveguides  with  side-coupled  silicon  waveguide
segments designed to control the amplitude and phase of
light  in  the  waveguide  branches.  This  conceptually  and
architecturally simple design uniquely affords both ultra-
fast computing  time  and  low  energy  consumption.  Im-
portantly,  the  design  is  also  scalable  to  handle  CNNs
with  arbitrary  network  complexity.  Our  scalable  optical
CNN architecture  presents  a  universal  platform  for  im-
plementing  CNN-related  functions  leveraging  the  vast
asset  base  of  algorithms  that  have  been  matured  in  the
field of  computer  science  research  (Supplementary  in-
formation  Section  1).  Another  important  advantage  of
CNNs  is  that  they  can  protect  signals  from  distortion
compared  with  fully-connected  neural  networks,  as
CNNs  only  contain  local  connections.  As  a  proof-of-
concept,  we  experimentally  implemented  the  network
design  through  several  computation  tasks  including
transcendental  equations  solvers,  multifunctional  logic
gate operators, and half-adders. 

Results and discussion
 

Scalable network configuration
To realize CNNs in an on-chip platform, we designed an
all-optical network  to  emulate  the  convolutional  opera-
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tions (as shown in Fig. 1(a)). The signals fed into the net-
work are  encoded in  the  form of  light  amplitude  distri-
bution  in  discrete  input  waveguides.  The  network
weights optimized to yield the target solutions are imple-
mented  through  convolution  operation  between  layers,
i.e. , where  and  represent the light
amplitude  distributions  in  the th and  ( −1)th layers, re-
spectively,  and  gives  the  weight  that  dictates  the
way signals are passed from the th layer to the ( −1)th lay-
er.  Results  of  the computing tasks are given in the form
of light amplitude distribution in a set of discrete output
waveguides. To the best of our knowledge, this is the first
implementation of  a  physically-fixed CNN on a full  op-
tical implementation chip.

The CNN is constructed from cascaded element struc-
tures  comprising  Y-shaped  silicon  waveguides  side-
coupled with silicon weight modulators.  As an example,
the  schematic  structure  of  the  all-optical  transcendental
equation  solver  based  on  CNN  is  shown  in Fig. 1(b).
There  are  three  layers  of  the  element  structure  arrays.
Each element  structure  connected  to  two  adjacent  ele-
ment structures in the adjacent layers.  Weight modulat-

w

a b

ω

a
b

w

ors are  used  to  regulate  the  weights  of  the  network  ac-
cording to the coupled mode theory. The weight modu-
lator  waveguide  (as  shown  in Fig. 2(a))  has  the  same
width  as  the  transmission  waveguide  to  ensure  efficient
coupling  and  large  amplitude  modulation.  As Fig. 2(b)
shows, the magnitude of weight ,  which stands for the
amplitude transmittance of  the  signal  light  in  the  trans-
mission waveguide  within  the  element  structure,  can be
continuously  tuned  from  0.025  to  0.955  by  varying  the
length  ( )  of  weight  modulator  and  the  gap  width  ( )
between  the  transmission  waveguide  and  the  weight
modulator. Similarly, the phase of weight  representing
the phase of the signal light at the waveguide output port
can be continuously adjusted from 0 to 2π by changing 
and  as  well  (as  shown  in Fig. 2(c)).  Importantly,  the
amplitude  and  phase  of  weight  can  be  independently
adjusted  to  achieve  arbitrary  control  of  the  signal  light.
For further  discussions  of  the  weight  modulation meth-
od, please see Supplementary information Section 2.

It’s worth  mentioning  that  other  complex  mathemat-
ical  operations  can  be  systematically  designed  into  the
unified  optical  CNN  architecture  by  cascading  the  Y-
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Fig. 1 | General architecture of the all-optical computing framework. (a)  The CNN architecture showing the connections between adjacent

layers: , where  and  represent the lth and (l−1)th layer’s optical signal respectively,  shows the weight that determines

how signals are propagated from lth layer to (l−1)th layer.  (b)  Schematic diagram of the all-optical  transcendental  equation solver.  (c)  Top-view

SEM image of the all-optical transcendental equation solver, where the scale bar is 100 μm. Here, the white dotted lines mark the five layers for

waveform discretization, and the red dotted lines separate the three layers of the optical CNN structure.
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shaped element structures.  In the followings,  we elabor-
ate  several  examples  of  our  optical  CNN  design  being
implemented as  transcendental  equation  solvers,  multi-
farious logic gate operators, and half-adders. It should be
noted that signals operated in the network are the com-
plex amplitudes of the light field, and what are measured
in  the  experiment  are  light  intensities  at  output  ports.
Therefore,  the  nonlinearity  is  introduced  in  the  process
of the measurement to realize the various functionalities
of the devices although there are only convolutional lay-
ers in our networks. 

All-optical transcendental equation solver
Since  equations  are  effective  tools  for  describing  system
states  and  processes,  solving  equations20 can  inform  the
state  of  the  system  under  investigation  and  predict  the
trajectory  of  system  evolution.  Since  transcendental
equations  can  only  be  numerically  solved  except  for  a
few cases,  numerical  solution  of  transcendental  equa-
tions is still an important subject in mathematical calcu-
lations. We have developed a solver that can predictably

solve  transcendental  equations  using  optical  CNN  with
exceptional computational performance.

k

A transcendental equation with the form of a trigono-
metric function is selected because in general, any arbit-
rarily complex mathematical expressions can be decom-
posed into  trigonometric  functions  by  Fourier  decom-
position, which means that we can solve any other tran-
scendental equations  in  principle.  The  all-optical  tran-
scendental  equation solver  is  used  to  solve  the  equation
with a variable parameter : 

cos (2kx) + 4 = tan (kx) . (1)

cos (2kx) + 4

cos (2kx) + 4
3 3+ 8× i/N i

N

We  choose  to  represent  the  input  waveform  (in  this
case )  by  encoding  its  values  at  a  set  of
evenly  spaced x points with  light  amplitudes  in  a  wave-
guide  array.  Firstly,  light  from a  single  input  waveguide
is passed through a 5-layer cascaded Y-branch structures
to generate the discretized waveform of  in
the range from  to , where  is an integer in
the  range  from  0  to  29,  and  is  the  total  number  of
waveguides.  Then  the  output  signal  representing  the
discretized  waveform  is  input  to  the  CNN  with  a  total
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layer  number  of  3  (multiple  layers  in  the  linear  neural
network is to provide enough degrees of freedom to help
complete the  learning  task).  An SEM image  of  this  net-
work  structure  is  shown  in Fig. 1(c).  The  fixed  network
weights were pre-determined prior to the fabrication via
an iterative  training  algorithm  detailed  in  Supplement-
ary  information  Section  3,  and  implemented  using  the
silicon weight modulator structures in this optical CNN.
The network  weights  are  optimized  such  that  the  solu-
tion to the equation is given by the position of the wave-
guide yielding the maximum output intensity: 

x = 3+ 8× i′/N′
, (2)

i′ N′

k
k

k

where  is an integer, and  is the total number of out-
put waveguides.  To validate  the  performance  of  the  op-
tical  CNN  equation  solver,  solution  of Eq.  (1) is per-
formed by inputting a series of waveforms with the para-
meter  equaling to 1.67, 1.84 and 2.35, respectively. Fig.
3(a) shows the optical CNN output for  = 1.67, and the
results pertaining to the other two  values are presented
in Supplementary information Section 3. Here, we define
the deviation of the CNN output solution from the true
solution as: 

(xexp − xtheor)/Xout , (3)

xexp xtheor

Xout

3 3+ 8× 26/27

N′

k

where  and  correspond to the encoded x values
associated  with  the  maximum  intensity  waveguide  (fol-
lowing Eq. (2)), and the subscripts exp and theor denote
the experimentally measured and theoretically predicted
results, respectively.  represents the entire range of x
over which the solution is sought (  to  in
this case),  which is  dictated by the total  number of  out-
put waveguides  (27 in our device). Fig. 3(b) summar-
izes  the  solution  deviations  for  the  three  values.  The
test result shows that our transcendental equation solver
has  achieved  high  accuracy  with  a  maximum  deviation
less  than  5%,  and  in  most  cases  the  deviations  are  less
than 3%. The deviation results from the finite number of
output  waveguides  and  imperfect  sample  fabrication.
Thus,  it  should  be  emphasized  that  the  accuracy  of  the
solution  can  be  improved  by  increasing  the  number  of
output waveguides in theory.

ps

Besides  excellent  solution  accuracy,  the  all-optical
equation  solver  also  features  ultrafast  and  energy-effi-
cient computation. The total computing time, character-
ized  by  the  time-of-flight  of  light  through  the  entire
structure  (including  the  waveform  discretization
section), is 9.4 , and the effective operation time of the

ps

fJ/bit

aJ/bit

3-layer CNN is as short as 1.3 . The optical solver can
also claim  ultralow  energy  consumption.  In  our  experi-
ments,  the  computation  energy  overhead  is  92 
based on the laser pulse power we used. Our analysis fur-
ther demonstrated  that  the  shot-noise-limited  mean  er-
ror  converges  to  a  limit  bounded  by  the  discreteness  of
the network output at pulse energies above a few .
(Supplementary information Section 6).

The optical  CNN architecture  presented here  also  of-
fers  the  unique  potential  of  crosstalk  elimination.
Crosstalk in optical analog computing is generally caused
by  light  backscattering  between  adjacent  layers  in  a
densely integrated platform. Based on our device design,
the  crosstalk  is  expected  to  be  naturally  eliminated  by
means  of  the  error  back  propagation  optimization

 

0.4
Deviation

Theoretical

Simulation

Experimental
0.3

0.2

In
te

n
s
it
y
 (

a
.u

.)

0.1

0
0

0

5

5

−5

10

10

−10

15

15

−15

−25

Waveguide
20

20

−20

D
e
v
ia

ti
o
n

 (
%

)

−30

−40
−35

−45
25

Solution

1.67

1.84

2.35

Deviation (%)

E
q
u
a

ti
o
n

4.5

5.0

4.0

5.5

3.5

3.0

2.0

2.5

1.5

0.5

1.0

0
x1 x2 x3 x4 x5

a

b

Fig. 3 | All-optical transcendental equation solver. (a) Output light

intensity distribution in the output waveguides (k = 1.67). The arrows

in the  figure  correspond  to  the  locations  of  the  solutions.  The  hori-

zontal axis is the number of discrete waveguides, the vertical axis on

the left represents the output signal intensity, and the vertical axis on

the right gives the deviation between the experimental output signal

and the theoretical value. (b) A graphic representation of solution de-

viation.  The  horizontal  axis  labels  the  individual  solutions,  and  the

vertical  axis represents three values of  the parameter k.  The shade

of the color indicates the magnitude of the deviation.

Opto-Electron Adv  4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-5

 



process. Stability analysis of our network further demon-
strates  its  high  fault  tolerance  to  defects  such  as  weight
deviation and  waveguide  damage  (Supplementary  in-
formation Section 5). 

Multifarious logic gate operators
All-optical  logic  gates  constitute  the  basic  building
blocks for ultra-high-speed all-optical chips, as any com-
plex optical  logic circuit  can be composed of these logic
gates. In addition, logic operation sets the foundation for
more  complex  optical  signal  processing  functions,  such
as  addressing21,  data  coding22,  parity  checking23 and sig-
nal extraction24. However, current all-optical logic device
designs based on linear coherence of signal light or non-
linear interactions still face challenges in realizing recon-
figurability  and  multifunctional  operation  (implement-
ing  multiple  logic  functions  in  a  single  chip)  with  high
speed and low power consumption.

24

A+ B A⊙ B

We leverage the scalability of our network to optimize
on-chip all-optical multifarious logic devices. The design
optimizes 6 input ports, including 2 signal input termin-
als and 4 control bits with a total of 5 layers (as shown in
Fig. 4(a, b)). Similar to the all-optical equation solver, the
fixed network weights were optimized using the iterative
algorithm. Sixteen logic functions (representing exhaust-
ive  combinations  of  output  results  corresponding  to  all
four  possible  input  signals  11,  10,  01,  and  00  is =  16)
can be realized through seven different CNN structures,
each  with  different  network  weights  and  responds  to  a
different set of control bits. Each structure can perform 3
to 4 logic functions. Here we illustrate one of the optical
CNN structures in Fig. 4(a), and characterization results
of the other six structures are elaborated in Supplement-
ary information Section 4.  As we can see from Fig. 4(c),
when  the  control  bits  are  1001,  0110  and  1010,  the
optical CNN performs “ (OR)”, “  (XNOR)”,
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(A+ Ā)B

ps fJ/bit

10−9

and  “ ”  functions  respectively.  The  intensity
contrast of logic states 0 and 1 are experimentally meas-
ured as 7.2 dB, 10.4 dB, and 12.9 dB respectively for the
three functions. The time-of-flight computing time is 3.3

 with an energy consumption of 71 . Our analys-
is  further  demonstrates  that  energy  consumption  down
to 10.4 aJ/bit can be achieved while maintaining a low er-
ror  rate  of  (Supplementary  information  Section  6).
In Fig. 4(d), the  optical  CNN  responses  when  the  per-
formance of the three logic functions are overlaid in one
plot, showing  a  minimal  output  optical  intensity  con-
trast between the logic states 0 and 1 of 4.9 dB. The res-
ult  shows  that  the  optical  CNN’s  output  logic  states  are
readily  distinguishable  while  performing  multiple  logic
functions. That is to say, more cascades to scale up in the
future may still work. 

Half-adder
All-optical half-adder can perform the calculation task of
adding two input data bits and yielding a Sum bit and a
Carry  bit  in  an  all-optical  implementation  (Fig. 5(a)).

ps
fJ/bit

10−9

Half-adder  is  a  basic  unit  of  arithmetic  logic  operation
optical circuits: for example, a full-adder can be realized
by  cascading  two  half-adders.  Here  we  demonstrate  an
all-optical half-adder  based  on  our  optical  CNN  plat-
form. We use 2D convolutional layers to train our CNNs
for half-adder as well as multifarious logic gate operators,
because  shared  weights  cannot  meet  the  demands  in
these  two scenarios.  After  the  training  process,  only  the
weights corresponding to the non-zero positions are ex-
tracted (Supplementary information Section 1). Here, 12
network  weights  are  determined  through  the  algorithm
optimization, and an SEM image of half-adder is shown
in Fig. 5(b). The arithmetic logic operations of “1” + “1” =
(Sum “0”, Carry “1”), “0” + “1” = (Sum “1”, Carry “0”),
and “1” + “0” = (Sum “1”, Carry “0”) are realized. The
average  optical  intensity  contrast  between  logic  states  0
and  1  is  14.2  dB  (Fig. 5(c)). The  time-of-flight  comput-
ing  time  is  2.7  with  an  energy  consumption  of  50.8

.  Similarly,  our  analysis  further  demonstrates  that
energy  consumption  down  to  23.8  aJ/bit  can  be
achieved  while  maintaining  a  low  error  rate  of 
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(Supplementary information Section 6). The function of
the half-adder is successfully demonstrated while achiev-
ing  high  intensity  contrast,  which  further  validates  that
the CNN design is highly scalable and broadly applicable
to a wide variety of all-optical processing functions.

Moreover, based  on  this  element  structure,  the  de-
sired phase distribution can be obtained at  output ports
by adjusting  weights  of  network,  then  the  spatial  filter-
ing  system  can  be  constructed  to  realize  the  Fourier
transformation  of  the  input  signal.  Similarly,  the  input
function  can  be  expressed  as  a  linear  combination  of
multiple monomials at a given point to achieve series ex-
pansion. In  addition,  by  defining  the  input-output  rela-
tionship  in  advance  to  realize  the  network  training,  the
output  signals  corresponding  to  different  input  signals
are specified to represent specific code groups. Thus the
encoder can be implemented.  From above,  a  number of
signal processing functions are allowed to be implemen-
ted on the proposed platform, which promotes the whole
field  of  nanophotonics.  The  performance  benchmark
and significance  of  this  work  are  presented  in  Supple-
mentary information Section 7. 

Conclusion
In  this  paper,  we  experimentally  demonstrated  the  first
physically-fixed CNN for all-optical computing based on
silicon waveguides.  Our  optical  CNN  is  formed  by  cas-
cading a simple,  universal  element structure comprising
Y-shaped  silicon  waveguides  side-coupled  with  silicon
weight modulators.  We implemented the design to real-
ize all-optical transcendental equation solvers, multifari-
ous logic gate operators, and half-adders, all of which ex-
hibit  picosecond-scale  ultrafast  operation  and  ultralow
energy  consumption  of  the  order  of  tens  of  femtojoules
per bit.  This optical network architecture is readily scal-
able which has the potential to be further extended to ex-
ecute other  complex computing tasks  simply  by cascad-
ing the basic element structures.  Furthermore,  this  plat-
form  offers  the  possibility  of  parallel  computing  using
wavelength multiplexing. Our work therefore points to a
promising direction for next-generation all-optical com-
puting systems. 

Methods
 

Theoretical analysis and numerical simulation.
PyTorch, a custom package in Python which is used pop-
ularly  for  machine  learning,  was  used  to  construct  the

theoretical modeling of our optical neural networks. The
calculations were  based  on  1D CNN used  for  the  equa-
tion solver and 2D CNN used for logic devices and half-
adder,  respectively.  Some  optimizers  were  then  used  in
PyTorch,  applying  stochastic  gradient  descent  (SGD)  in
the  learning  process,  to  compute  the  parameters  in  our
networks  and  minimize  the  loss  function  related  to  the
model’s  performance as  possible.  The simulation results
were  conducted  from  finite  element  method  (via  the
COMSOL Multiphysics commercial software). 

Device fabrication.
Devices were  fabricated  leveraging  standard  silicon  mi-
crofabrication technologies.  A 6% hydrogen silsesquiox-
ane (HSQ) electron beam resist was spun onto a double-
side  polished  silicon-on-insulator  (SOI)  wafer  and  was
patterned by  an  Elionix  ELS-F125  electron  beam  litho-
graphy (EBL)  tool.  Development  of  the  resist  was  per-
formed by immersing the chip into 25% tetramethylam-
monium  hydroxide  solution  for  150  seconds.  The  chip
was  subsequently  etched  in  an  RIE  tool  (PlasmaTherm
Inc.) with chlorine gas at  a power of 200 W and a pres-
sure  of  5  mTorr  (1  Torr  =  133.322  Pa).  After  stripping
the  electron  beam  resist  in  HF,  an  additional  EBL  step
was conducted to pattern the waveguide grating couplers
with ZEP resist  on the  same EBL tool  (etching depth of
grating  couplers  is  different  from  that  of  transmission
waveguide  to  obtain  higher  coupling  efficiency).  The
chip was developed in ZED-N50 developer and etched in
the same RIE tool under identical conditions. Finally, the
resist  was  stripped  by  soaking  in  N-Methyl-2-
Pyrrolidone (NMP) overnight. 

Optical measurement.
Devices were  tested  on  a  microspectroscopy  measure-
ment system.  Laser  beam  from  a  home-built  femto-
second  pulse  fiber  laser  system  was  used  as  the  light
source. The laser central wavelength was 1560 nm with a
repetition  rate  of  100  MHz  and  a  pulse  width  of  80  fs
(The results are stable in the range of femtosecond pulse
wavelength broadening). The signal light with adjustable
spot  size  was  focused  to  the  input-coupling  port  of  the
sample.  The  output  signal  was  collected  with  a  long
working distance objective lens (Mitutoyo 20, NA = 0.58)
and imaged onto a charge coupled device (CCD) camera
(Xenics, XS-4407, Belgium).
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